AN IN SILICO PRIMARY AND SECONDARY STRUCTURE PREDICTION OF HUMAN INTERFERON ALPHA RECEPTOR 2 PROTEIN
DOI:
https://doi.org/10.69656/pjp.v14i1.278Keywords:
Human IFNAR-2, In silico analysis, Protein secondary structure, Subcellular compartmentalizationAbstract
Background: Structural analysis of human interferon alpha receptor 2 (IFNAR-2) protein is important to determine its structure and function because that information is needed to understand the role and mechanism of IFNAR-2 protein in human immune system. Therefore, this study was conducted to find out composition of amino acids contributing in primary and secondary structure of IFNAR-2 protein. Methods: Protein sequences of human IFNAR-2 were retrieved from ‘The Universal Protein Resource (UniProt)’ and ‘National Center for Biotechnology Information (NCBI)’ databases. The Basic Local Alignment Search Tool (BLAST) was used to search for every IFNAR-2 protein sequence in NCBI database. Human IFNAR-2 protein sequences were further refined according to set criteria for experimental analysis. All retrieved IFNAR-2 protein sequences were aligned by using computational tool ‘Clustal Omega’. Consensus protein sequence was obtained from aligned protein dataset. Furthermore, consensus protein sequence of IFNAR-2 was subjected for secondary structure prediction analysis. Protein topology was predicted by using Expert Protein Analysis System (ExPASy) server and Transmembrane Helices; Hidden Markov Model. Results: Alignment data set revealed that IFNAR-2 protein consisted of 515 amino acids long chain, having total 37 identical positions with 6.446% identity. Protein topology analysis predicted that human IFNAR-2 protein consists of verities of secondary structures such as alpha-helix, turn and beta sheets. Alpha-helixes mainly form three topological domains (i) inner (1–6 amino acids), (ii) outer (7–29 amino acids) and (iii) trans-membrane domain (30–515 amino acids). Conclusion: Human IFNAR-2 protein consists of 515 amino acids having hydrophobic, polar and aromatic characteristics. Alpha-helixes, turn, beta sheets and three topological domains constitute secondary structure and predicted topological domains contribute in the subcellular compartmentalization.
Pak J Physiol 2018;14(1):40–3
Downloads
References
2. Novick D, Cohen B, Rubinstein M. The human interferon alpha/beta receptor: characterization and molecular cloning. Cell 1994;77(3):391–400.
3. Kumaran J, Colamonici OR, Fish EN. Structure-function study of the extracellular domain of the human type I interferon receptor (IFNA)-1 subunit. J Interferon Cytokine Res 2000;20(5):479–85.
4. de Weerd NA, Nguyen T. The interferons and their receptors, distribution and regulation. Immunol Cell Biol 2012;90:483–91.
5. Nagaoki Y, Imamura M, Aikata H, Daijo K1, Teraoka Y1, Honda F, et al. The risks of hepatocellular carcinoma development after HCV eradication are similar between patients treated with peg-interferon plus ribavirin and direct-acting antiviral therapy. PLoS One 2017;12(8): e0182710d.
6. Salem R, Miller FH, Yaghmai V, Lewandowski RJ. Efficacy of interferon-based antiviral therapy on the risk of hepatocellular carcinoma of patients with chronic hepatitis C: Further evidence in decompensation cirrhosis. J Hepatol 2013;58:1258–66.
7. Song X, Jin P, Qin S, Chen L, Ma F. The Evolution and Origin of Animal Toll-Like Receptor Signaling Pathway Revealed by Network-Level Molecular Evolutionary Analyses. PLoS One 2012;7(12):e51657.
8. Söding, J. ‘Protein homology detection by HMM–HMM comparison’. Bioinformatics 2005;21:951–60.
9. Ertugrul F, Ibrahim K. In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L. J BioSci Biotech 2014;3(1):61–7.
10. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 2012; 40(web Server Issue):W597–603.
11. Laila CR, Jacob P, Jean-Yves T, Harold AS, Gideon S. Structure of the interferon-receptor complex determined by distance constraints from double-mutant cycles and flexible docking. PNAS 2001;98(23):13231–6.
12. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I Interferon Receptors: Biochemistry and Biological Functions. J Biol Chem 2007;282(28):20053–7.
13. Huayu X, Brian LB, Hong-ming S, Michael HH. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci USA 1995;92:6349–53.
Downloads
How to Cite
Issue
Section
License
The author(s) retain the Copyrights and allow their publication in Pakistan Journal of Physiology, Pak J Physiol, PJP to be FREE for research and academic purposes. It can be downloaded and stored, printed, presented, projected, cited and quoted with full reference of, and acknowledgement to the author(s) and the PJP. The contents are published with an international CC-BY-ND-4.0 License.